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for implementing structural health monitoring algorithms. Robust and practical SHM

methodologies being able to rapidly and accurately detect and assess changes in the

monitored system are required to be at the core of these ‘‘smart’’ structures. A data-

driven non-parametric identification technique is used to implement a robust change

detection methodology for uncertain MDOF chain-like systems that can be implemen-

ted in densely distributed smart-sensor networks. Experimental data from a test-bed

structure tested at Los Alamos National Laboratory are used to evaluate the

effectiveness and reliability of the proposed SHM methodology. The results of this

study showed that the proposed approach was able, in a rigorous statistical framework,

to confidently detect the presence of structural changes, accurately locate the structural

section where the change occurred, and provide an accurate estimate of the actual level

of ‘‘change’’. Additionally, a full-order finite element model of the test structure, as well

as the results from the experimental modal identification using the ERA algorithm were

employed to validate the results obtained in this change-detection study.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background and motivation

During last years, the potential benefits that structural health monitoring (SHM) can have in the performance,
serviceability, and reliability of aerospace, civil and mechanical structures have been recognized and demonstrated
worldwide through the extensive technical literature available in this emerging field. Several illustrative applications can
be found in the proceedings of the International and European Workshops on Structural Health Monitoring [1,2], the World
Conference on Structural Control and Monitoring [3,4], and the SPIE Conferences on Smart Structures and Materials &
Non-destructive Evaluation and Health Monitoring [5,6].
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Extensive research on the core technical areas of structural health monitoring—modeling, measurements, data analysis
and prediction [7]—have led to a significant number of well-developed vibration-based damage identification algorithms
and sensing technologies. Despite all these advancements, realizing field-deployable and continuous online SHM with
centralized data acquisition, processing, and analysis has been challenging. Densely distributed sensor networks, which are
required to monitor the condition of individual components and/or the entire system in most of the real large-scale
applications, are still restricted by current limitations in the hardware (i.e., wired or wireless sensors) and software
(i.e., damage identification methods). The use of dense array of sensors, especially at high sampling frequencies, is needed
in order to capture the effects that structural changes have in the systems’ dynamic response.

Promising ongoing research on ‘‘smart’’ embedded sensing technologies is offering low-cost alternatives and new
opportunities for large-scale SHM. Sensors with on-board microprocessors powered by energy harvesting or
microbatteries and featuring computational, sensor diagnostic, and reconfigurable wireless communication (i.e., multihop
protocols) capabilities, can be used to increase the spatial resolution of data collection while providing a distributed
computing framework for implementing structural health monitoring algorithms. Robust and practical SHM
methodologies being able to rapidly and accurately detect and assess changes in the monitored system are required to
be at the core of these ‘‘smart’’ sensors. Although some approaches have been validated in the laboratory [8–10], there are
some unavoidable factors in real structures that SHM strategies, exploiting the ‘‘smart’’ sensors capabilities, have to still
cope with: the presence of intrinsic and damage-associated nonlinearities (e.g., hysteresis, gaps, sliding friction); the
inherent stochastic nature of the systems’ components (i.e., randomness in the structural properties and materials); the
variability in environmental or operational conditions; and the uncertainties in the modeling, measurement and data
analysis processes.

Excellent and careful reviews of existing methods and technologies, as well as recent publications summarizing the
state-of-the-art of SHM can be found in Doebling et al. [11], Peeters and De Roeck [12], Sohn et al. [13], Van der Auweraer
and Peeters [14], Staszewski et al. [15], Inman et al. [16], Kerschen et al. [17], Park and Sohn [18], Adams [7], Brownjohn
[19], Farrar et al. [20], Farrar and Worden [21], Friswell [22], Glaser et al. [23], Lynch [24], Nagayama and Spencer [9], Park
and Inman [25] and Sohn [26].

Over the years, several approaches for constructing computationally efficient, model-free representations of single-
degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems have been successfully applied to synthetic and
experimental data [27–31]. Among these approaches, a time-domain non-parametric identification technique for chain-
like MDOF systems presented by Masri et al. [27] is of special interest. The decomposition strategy of this technique makes
it suitable to exploit the distributed computing capabilities of smart sensors.

1.2. Scope

In this exploratory study, the decomposition approach presented in the above-mentioned reference is used to
implement a robust data-driven change detection methodology for uncertain chain-like systems that can be implemented
in densely distributed smart-sensor networks. The chain-like system topology encompasses many practical applications
including tall buildings, transmission towers, offshore platforms, wind turbines and airplane wings. Experimental data
from a test-bed structure tested at Los Alamos National Laboratory are employed to validate the proposed approach. A
stochastic description of the detected changes is additionally used to assess the methodology’s range of detectability and
reliability. An overview of the chain-like system identification approach is provided in Section 2; the description of the
test-bed structure, implementation details of the change detection methodology, and the statistical analysis and discussion
of the results are all presented in Section 3.

2. Chain-like system identification approach

Consider an MDOF chain-like system, consisting of a series of lumped masses mi interconnected by n arbitrary unknown
(non-necessarily) nonlinear elements GðiÞ, subjected to a base motion x0, and/or directly applied forces Fi. The elements’
restoring forces are assumed to depend on the relative displacement and velocity across the terminals of each element, in
addition to a set of specific parameters p that characterize the various types of nonlinearities. The differential equations of
motion for the system under discussion, shown in Fig. 1(a), can be written as [27,32]

GðnÞðzn; _zn;pÞ ¼
Fn

mn
� €xn

GðiÞðzi; _zi;pÞ ¼
Fi

mi
�

miþ1

mi

€xiþGðiþ1Þðziþ1; _ziþ1;pÞ for i¼ n�1;n�2; . . . ;1 (1)

where GðiÞðzi; _zi;pÞ is the mass-normalized restoring force function of the element GðiÞ, €xi is the absolute acceleration of the
mass mi, with zi and _zi being the relative displacements and velocities between two consecutive masses. These relative
motion variables can be obtained from the absolute state variables of the masses and the moving support.

From Eq. (1), it is clearly seen that the restoring forces acting on all elements in the chain-like system can be
sequentially determined by starting the data processing from the n th (tip) element of the chain. Within the context of this
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Fig. 1. (a) Typical structural topology for a nonlinear MDOF chain-like system. (b) LANL-4DOF test-bed structure schematic drawings.
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method, the absolute accelerations €xi are assumed to be available from measurements, as well as the applied forces Fi, the
base excitation x0 and the magnitude of the lumped masses mi.

After obtaining all the restoring force time histories, it is possible to generate a non-parametric representation for each
element, in terms of a truncated doubly indexed series expansion in a suitable basis, that approximates the real restoring
force function [33,28,29,34]. The approximating representation Ĝ

ðiÞ
ðzi; _ziÞ for the obtained restoring forces, in an orthogonal

polynomial basis, is given by the following expression:

GðiÞðzi; _zi;pÞ � Ĝ
ðiÞ
ðzi; _ziÞ ¼

Xqmax

q ¼ 0

Xrmax

r ¼ 0

CðiÞqr Tqðzi
0 ÞTrð_zi

0 Þ (2)

where CðiÞqr are the Chebyshev series coefficients, Tkð�Þ is the Chebyshev polynomial of order k, and zi
0 , _zi
0 are the normalized

relative state variables. Subsequently, each of the estimated restoring forces can be expressed as a power series of the form

Ĝ
ðiÞ
ðzi; _ziÞ ¼

Xqmax

q ¼ 0

Xrmax

r ¼ 0

aðiÞqrz
q
i
_zr

i (3)

where aðiÞqr are constant coefficients, and zi, _zi are the relative state variables.
The application of this non-parametric identification approach allows the capture of the dominant features of the

nonlinear elements into reduced-order, model-free representations [29]. Due to the fact that the non-parametric
representation of the restoring force depends on the relative state variables, the numerical implementation of the chain-
like system identification approach requires the availability of displacement and velocity time-histories, which can be
obtained by digital signal processing of the measured accelerations. The advantage of this formulation is that the
identification of a MDOF system can be decomposed into a process where each of the elements in the system is identified
independently. Furthermore, since the identification of each element is done individually, this procedure can be easily
implemented in a distributed computing framework. It should be emphasized that since this approach is entirely data-
driven, the number of degrees-of-freedom in the considered chain-like system will be determined by the number of
available sensors deployed on the structure.
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3. Change detection in a MDOF test-bed structure

Experimental data from a test-bed structure, that has been tested at the Los Alamos National Laboratory (LANL), were
used to illustrate the application of the methodology under discussion in detecting structural changes in the system. Full
details concerning this LANL test setup are documented in [35].

3.1. LANL test-bed structure

The laboratory three-storey shear-building structure (see Fig. 1) consists of four aluminum plates ð30:5� 30:5� 2:5 cmÞ
connected by bolted joints to four aluminum columns ð17:7� 2:5� 0:6 cmÞ at each floor. An additional element ð15�
2:5� 2:5 cmÞ attached to the top floor and an adjustable bumper mounted on the second floor can be used to introduce a
gap nonlinearity in the system. The gap distance can be modified by adjusting the position of the bumper to vary the level
of the nonlinearity. The whole structure is mounted on two rails to allow the system to slide only in one direction. An
electro-dynamic shaker was used to provide a band-limited random base excitation ð202150 HzÞ to the test structure.

The deployed sensor network consists of four accelerometers and a force transducer with nominal sensitivities of
1000 mV/g and 2.2 mV/N, respectively. The accelerometers were attached to each aluminum plate, along a vertical center
line, to measure the dynamic response of the 4DOF lab structure. The force transducer was connected to the tip of the
stinger to gauge the input force generated by the shaker. The sensor’s measurements were recorded at a sampling
frequency of 322.58 Hz by a data acquisition system.

The structural changes in the system were physically simulated through pure variations in either the mass or stiffness
of the reference structure. The mass of the system was modified by attaching a 1.2 kg concentrated mass to the aluminum
plates, while the changes in stiffness were introduced by reducing by half the cross-section thickness of selected columns.
This change in the cross-section corresponded to a 87.5% reduction in the column’s stiffness. The nine structural state
configurations considered in this study are summarized in Table 1. A total of 90 acceleration data sets, involving all
structural configurations, were obtained from ten experimental tests performed under different external force realizations
(i.e., 10 data sets for each system configurations) in order to account for the variability in the data. Although the test-bed
structure had an adjustable nonlinear gap in the third storey, it was set to keep the system within the linear range during
the dynamic tests considered in this study.

3.2. Sample data processing results

For the purposes of this study, the test-bed structure was considered as a 3DOF chain-like system subjected to base
motions, hence the simplified equations of motion (Eq. 1) could be rewritten as:

Gð3Þðz3; _z3;pÞ ¼� €x3

Gð2Þðz2; _z2;pÞ ¼�
m3

m2

€x2þGð3Þðz3; _z3;pÞ

Gð1Þðz1; _z1;pÞ ¼�
m2

m1

€x1þGð2Þðz2; _z2;pÞ (4)

In addition, only the acceleration time-histories recorded by the four accelerometers and the floor mass ratios

mi ¼miþ1=mi were assumed to be available. Because the system’s mass is approximately uniformly distributed throughout
the structure, the mass ratios mi were considered equal to one. Since the displacement and velocity time-histories at
measurement stations are required to apply this identification approach, the acceleration records were windowed,
detrended, band-pass filtered and integrated. Typical top floor vibration records, including the measured accelerations and
corresponding computed velocities and displacements, are shown in Fig. 2(a). Note that the system displacements are on
the order of one tenth of a millimeter.
Table 1
Summary of structural state conditions.

State Condition Description

State#1 Reference condition –

State#2 19.1% base mass increment 1.2 kg additional mass on the base

State#3 19.1% 1st-storey mass increment 1.2 kg additional mass on the 1st storey

State#4 21.8% 1st-storey stiffness reduction 87.5% stiffness reduction in column 1BD 1st storey)

State#5 43.7% 1st-storey stiffness reduction 87.5% stiffness reduction in columns 1AD and 1BD (1st storey)

State#6 21.8% 2nd-storey stiffness reduction 87.5% stiffness reduction in column 2BD (2nd storey)

State#7 43.7% 2nd-storey stiffness reduction 87.5% stiffness reduction in columns 2AD and 2BD (2nd storey)

State#8 21.8% 3rd-storey stiffness reduction 87.5% stiffness reduction in column 3BD (3rd storey)

State#9 43.7% 3rd-storey stiffness reduction 87.5% stiffness reduction in columns 3AD and 3BD (3rd storey)
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force time-history for element Gð2Þ and the reconstructed time-history using the identified restoring force coefficients (virtually identical curves).
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Due to the limited experimental data available, all vibration records were divided into overlapped segments of 6.34
seconds, which include more than 100 fundamental periods of the system, so as to obtain an enlarged collection of
acceleration, velocity and displacement time-histories. In total, 150 ensembles of time-history records were generated for
each of the structural configurations.

Once the relative displacements and velocities had been computed, the proposed time-domain identification technique
is then applied to the ensembles of vibration record segments to build the associated non-parametric reduced-order
models for each element in the 3DOF chain-like system, by determining the corresponding restoring force coefficients. The
first two plots in Fig. 2(b) illustrate sample time-histories of relative displacements and velocities computed between the
second and first floor of the 3DOF system in its reference structural configuration. The third plot depicts the time-history
records of the measured and reconstructed mass-normalized restoring forces (basically identical curves) in solid and
dashed lines, respectively, for the element Gð2Þ connecting the first and second stories. Fig. 3(a) shows, as it is expected for
linear elements, the estimated planar restoring force surfaces over the normalized phase space for the reference condition
(i.e., state#1). The reconstructed mass-normalized restoring forces Ĝ

ðiÞ
ðzi; _ziÞ were computed using the estimated

coefficients and the corresponding sequence of Chebyshev polynomials in the relative state variables.
It should be noted that, although the structure was kept within the linear range during the dynamic tests, for the

identification purposes of this study, the system was not assumed linear. The restoring force identification was initially
carried out using Chebyshev polynomials of third-order in both normalized variables z0 and _z 0. A relative-contribution
analysis of the identified CðiÞqr indicated that the linear terms had the most significant contributions to the restoring forces
while the effect of the nonlinear terms were negligible. The non-parametric models for the elements GðiÞ, in the reference
and modified structural configurations, were then reduced to their corresponding first-order expansions by using the
orthogonality property of the identified Chebyshev coefficients [33].

3.3. Change detection

As a consequence of structural changes, the dynamic characteristics and response time-histories of any chain-like
system are affected; hence, the estimated restoring force surface of the interconnecting elements will exhibit variations
with respect to the reference case. In Fig. 3(b), the changes in the identified restoring force surface for the elements Gð3Þ, Gð2Þ

and Gð1Þ caused by 43.75% second-storey stiffness reduction (i.e., state#7) are displayed. From Eqs. (2) and (3), it is observed
that for a given order in the double-indexed expansion, variations in the restoring force would have effects on the
identified coefficients, since they characterize the governing dynamic features of the system. This makes the restoring force
coefficients a suitable set of parameters for change detection applications [29,30,34].
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Despite the fact that the Chebyshev coefficients CðiÞqr have several useful properties (i.e., orthogonality and unbiasness
with respect to model complexity) for the identification and detection of changes in linear and nonlinear systems [34],
their use in a stochastic framework is inconvenient since they rely on normalized variables [36]. Consequently, the
equivalent de-normalized restoring force coefficients aðiÞqr , corresponding to the dominant terms in the expansion, were
selected instead as the features to be used and analyzed in this experimental study of change detection in uncertain chain-
like systems.
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Since the mass-normalized restoring force function for linear elements can be expressed as:

GðiÞðzi; _ziÞ ¼
ki

mi
ziþ

ci

mi

_zi ¼ kiziþci _zi ¼ aðiÞ10ziþaðiÞ01
_zi (5)

the changes in mass and stiffness introduced in the LANL test-bed structure can be detected and quantified through direct
analysis of the aðiÞ10 and aðiÞ01 coefficients, which hereafter are going to be also called the ‘‘mass-normalized stiffness-like’’ and
‘‘mass-normalized damping-like’’ terms, respectively. The global modal parameters of the system can be determined
through the eigen decomposition of the global M�1K and M�1C matrices, which are given by the following expressions:

M�1K ¼

að1Þ10 m0 �að1Þ10 m0 0 0

�að1Þ10 að1Þ10það2Þ10 m1 �að2Þ10 m1 0

0 �að2Þ10 að2Þ10það3Þ10 m2 �að3Þ10 m2

0 0 �að3Þ10 að3Þ10

2
666664

3
777775

(6)

M�1C ¼

að1Þ01 m0 �að1Þ01 m0 0 0

�að1Þ01 að1Þ01það2Þ01 m1 �að2Þ01 m1 0

0 �að2Þ01 að2Þ01það3Þ01 m2 �að3Þ01 m2

0 0 �að3Þ01 að3Þ01

2
666664

3
777775

(7)

Notice that these matrices were reconstructed by modeling the three-storey structure as a 4DOF shear building [35].
By virtue of the normalization procedure embedded in the Chebyshev coefficients, it can be shown that the relative

changes in the Chebyshev and de-normalized power-series coefficients are related by the equations:

DC10

Cr
10

¼
a10ðzmax�zmin�zr

maxþzr
minÞþDa10ðzmax�zminÞ

a10ðzr
max�zr

minÞ
(8)

DC01

Cr
01

¼
a01ð_zmax�_zmin�_z

r
maxþ _z

r
minÞþDa01ð_zmax�_zminÞ

a01ð_z
r
max�_z

r
minÞ

(9)

where ð�Þr denotes the variables associated with the reference case. Clearly, straight interpretation of variations in
Chebyshev coefficients as genuine changes in the structure can be misleading because of their dependence on the extreme
values of the relative state variables.

It is worth pointing out that, although the identification results for all structural conditions considered in this study
indicated that the interstorey restoring forces were entirely characterize by the aðiÞ10 coefficients, which is foreseen for shear
building-type structures, the coefficients aðiÞ01 were also considered for the sake of completeness.

3.4. Implementation and statistical analysis

The results of implementing the chain-like system identification to build data-driven reduced-order models of the LANL
test-bed structure, and using the associated restoring force coefficients to detect structural changes in the system, are
reported in this section.

The second-order statistics of coefficients aðiÞ10 and aðiÞ01, obtained from all data ensembles and for each structural state
condition, are summarized in Table 2. Looking at the mean m and coefficient of variation d of the restoring force
coefficients, it is noted that the mass-normalized stiffness-like coefficients have a low variability, with coefficients of
variation ranging from 2% to 6%, compared to the more scattered mass-normalized damping-like coefficients
(i.e., coefficients of variation between 50% and 250%). The dispersion of each coefficient is evidently related to the level
of importance (contribution) in the characterization of the restoring forces. Clearly, from the change detection point of
view, the aðiÞ10 coefficients are much more robust than the aðiÞ01 coefficients. Since the structure was tested under controlled
laboratory conditions, the statistical variability in the restoring force coefficients aðiÞ10 and aðiÞ01 observed in this experimental
study is basically due to modeling, measurement, and data processing errors.

In order to have a more appropriate description and characterization of the randomness in the restoring force
coefficients, their underlying probability distributions have to be estimated. In an initial exploratory data analysis, normal
probability plots indicated that even though the mass-normalized coefficients within the first and third quartiles could be
reasonable assumed to have normal distributions, they deviated from Gaussianity in the tails of the distributions. This non-
Gaussianity in the distribution of the aðiÞ10 and aðiÞ01 coefficients can be attributable to inherent nonlinearities in the system’s
dynamic properties as well as the model-order reduction performed in the identification procedure [29]. In Fig. 4(a), the
(representative example) probability plots of the second-floor coefficients identified from the reference condition are
shown. Finally, the stochastic representations for the identified coefficients aðiÞ10 and aðiÞ01, for all structural conditions, were
obtained by kernel density estimation. Fig. 4(b) displays the histograms of the mass-normalized stiffness-like and
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Table 2

Summary of mean ðmÞ and coefficient of variation ðdÞ of the identified restoring force coefficients for the LANL test-bed structure.

State 1st floor 2nd floor 3rd floor

að1Þ10 ¼ k1 að1Þ01 ¼ c1 að2Þ10 ¼ k2 að2Þ01 ¼ c2 að3Þ10 ¼ k3 að3Þ01 ¼ c3

m ð�104
Þ d m d m ð�104

Þ d m d m ð�104
Þ d m d

State#1 7.121 0.040 10.665 0.716 6.390 0.048 5.742 1.229 6.733 0.035 3.795 1.057

State#2 7.039 0.039 10.460 0.571 6.421 0.045 3.487 1.745 6.728 0.027 3.933 1.340

State#3 5.830 0.031 9.039 0.520 6.334 0.045 6.282 1.057 6.703 0.043 4.776 1.077

State#4 5.513 0.042 6.468 0.764 6.174 0.054 7.975 0.747 6.618 0.033 4.076 1.155

State#5 4.092 0.040 1.965 2.580 6.179 0.040 6.422 1.061 6.547 0.032 2.479 1.816

State#6 7.053 0.041 10.958 0.519 4.836 0.041 5.511 0.891 6.611 0.026 3.790 0.981

State#7 7.187 0.032 10.174 0.597 3.597 0.035 5.357 0.717 6.572 0.026 3.944 1.004

State#8 7.223 0.062 7.665 0.968 6.700 0.051 3.166 1.541 5.269 0.031 2.197 1.759

State#9 7.303 0.058 8.799 0.736 6.486 0.039 3.055 1.686 3.765 0.025 2.273 1.249
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functions by kernel density estimators (solid lines) and superposed Gaussian distributions (dashed lines).
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mass-normalized damping-like coefficients for the second-floor element in the baseline structural condition, the estimated
probability density functions (solid lines), as well as the corresponding superposed Gaussian distributions (dashed lines).

To facilitate the visual analysis of the results for detecting structural changes in the LANL test structure, the probability
density functions of the reference-normalized coefficients ~aðiÞmn ¼ ða

ðiÞ
mn�

raðiÞmnÞ=
raðiÞmn, where raðiÞmn indicates the mean value of

the coefficients aðiÞmn from the reference condition, were estimated for all the structural conditions listed in Table 1. Figs. 5–8
display the pdfs of ~aðiÞ10 and ~aðiÞ01 for the baseline condition in solid lines, while the probability functions from the modified
structural configurations are plotted with dot-dashed and dashed lines. First (top) rows correspond to third-storey
coefficients; middle rows to second-storey, and bottom rows to first-storey.

Two normalized indices Dm=mr and Dm=sr were additionally employed to assess the effectiveness and robustness of the
chain-like system identification approach in detecting and localizing structural changes. These dimensionless indices
are found by dividing the difference in the mean values of the estimated restoring force coefficients ðDm¼ m�mrÞ by
the corresponding means ðmrÞ and standard deviations ðsrÞ from the reference case. The dimensionless index Dm=mr ,
which corresponds to the relative change in the coefficients, can be used intuitively to assess the magnitude or level of
‘‘change’’ in the system, while a measure of the statistical significance of the detected changes can be gauged by the
ratio Dm=sr , which is also known as the signal-to-noise ratio (SNR). Relatively large values of the latter index indicate
that the existing mean differences are not attributable just to the normal variability within the coefficients and therefore,
they can be associated with ‘‘genuine’’ changes in the system [30]. In this study, a rough threshold for detection of
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Fig. 5. Comparison of probability density functions of identified mass-normalized stiffness-like and mass-normalized damping-like coefficients. The solid

lines correspond to the pdf of the coefficients in the baseline condition. The dot-dashed and dashed lines show the coefficients’ pdf obtained in state#2

and state#3, respectively. (a) Normalized stiffness-like coefficients ð ~a ðiÞ10Þ and (b) Normalized damping-like coefficients ð ~a ðiÞ01Þ.
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jDm=sr jZ2:0 was established to determine, with at least a 95% of confidence, when significant changes had occurred in the
aðiÞ10 and aðiÞ01 coefficients. The values of Dm=mr and Dm=sr for all eight scenarios with structural changes are summarized
and presented in Table 3. Table entries in boldface correspond to actual structural changes that were detected
correctly.

For the state#2 scenario, the tabulated results showed that the relative changes in the mean values of all the restoring
force coefficients, including the 40% reduction in the damping-like coefficient for the second floor, were not significant
since all Dm=sr were below the previously defined threshold. Therefore, by counting on the experimental results, the
presence of structural changes, in this case, is ruled out because the fluctuations on the mean values can be associated with
the randomness of the estimated restoring force coefficients. Notice that, in this scenario, an additional mass was placed at
the baseplate of the structure. It is important to highlight that detecting structural changes located at the system’s base
level, are beyond the capabilities of this methodology since this approach relies on the relative motion between
interconnected lumped-masses.

Similar to the previous scenario, in state#03 the structure underwent a change in the mass (i.e., 19.1% mass increment),
but in this case, the additional mass was placed at the first-floor plate. The values obtained for Dm=mr showed a reduction
of 18.1% in the mean of the identified mass-normalized stiffness-like coefficient for the first-floor element Gð1Þ, while
relatively low changes, around 1%, were observed in the second and third-storey elements Gð2Þ and Gð3Þ. In addition, the
mean values of the mass-normalized damping-like terms also changed by 15.2%, 9.4% and 25.9% in the first, second and
third floor, respectively. By examining the values of Dm=sr , it is clear that only the að1Þ10 term with the largest signal-to-noise
ratio ðDm=sr ¼�4:480Þ for this scenario had a significant reduction in the coefficient’s mean with respect to the reference
case; while the variations in the other coefficients were negligible. Keeping in mind that changes in aðiÞ10 coefficients can be
caused by modifications in either or both the mass and stiffness; hence, additional assumptions and/or tests have to be
made in order to infer further information about how those physical parameters have been modified. This can be achieved
by experimentally estimating the mass in the sections of the chain-like system where the structural change have been
located. Detailed description of several approaches for mass estimation can be found in [27,37–39]. Assuming that only
changes in mass could occur in this scenario, the observed reduction in the að1Þ10 coefficient would correspond to a 22.1%
increment in the first-floor mass, which is fairly close to the actual 19.1% additional mass.
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lines correspond to the pdf of the coefficients in the baseline condition. The dot-dashed and dashed lines show the coefficients’ pdf obtained in state#4

and state#5, respectively. (a) Normalized stiffness-like coefficients ð ~a ðiÞ10Þ and (b) Normalized damping-like coefficients ð ~a ðiÞ01Þ.
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In Fig. 5(a), the estimated probability density functions of the reference-normalized ~aðiÞ10 coefficients obtained for
state#2 (dot-dashed lines) and state#3 (dashed lines) are compared with the baseline distributions from state#1 (solid
lines). Clearly, the only significant shift in the mass-normalized stiffness-like coefficients is observed in the structure’s
first-floor. In the second and third floor no difference in the coefficients’ distributions were observed after introducing the
structural change. From inspection of Fig. 5(b), it is easily seen that the probability distributions of the mass-normalized
damping-like coefficients did not differ appreciably among the different structural conditions.

In state#4 the stiffness of the first floor was decreased by 21.88% by introducing a 87.5% stiffness reduction in one of the
four columns of the corresponding storey. Similarly, a 43.75% floor stiffness reduction was obtained for state#5 by
decreasing the stiffness of two columns by a 87.5%. Since the structural changes in these scenarios consisted of column-
stiffness reductions, it was expected that the estimated first-floor stiffness-like coefficients would have the largest and
most significant variations among all other coefficients. By comparing the indices Dm=sr listed in Table 3, it is worth noting
that the detected relative changes in the mean of the identified coefficient að1Þ10 , for each of the above mentioned scenarios,
had in overall the highest levels of significance, with corresponding values of Dm=sr ¼�5:579 and Dm=sr ¼�10:506. As
previously discussed, these results mean that significant and observable differences exist between the að1Þ10 coefficients from
the baseline condition and each of the cases under discussion. Besides, the results also showed that no false-positive
changes in coefficients að2Þ10 and að3Þ10 were detected. To appreciate the capability of the presented methodology to assess the
level of change in the structure, a simple inspection of the Dm=mr indices for the relevant coefficient is needed. The values of
the corresponding detected mean changes in the first-floor stiffness-like coefficient were Dm=mr ¼�0:226 and
Dm=mr ¼�0:425 for the state#4 and state#5, respectively. The magnitude of the identified mean reductions in að1Þ10

correlate quite well with the real storey-stiffness reductions in the experimental model. Notice that detected changes were
proportional to the magnitude of the structural modification introduced in the system. Analysis of the probability density
functions depicted in Fig. 6 will lead to conclusions similar to the already described findings.

For the scenarios of state#6 through state#9, the normalized indices (Table 3) and the density distributions of the aðiÞ10

coefficients (Figs. 7–8), also showed the presence of statistically significant changes in the mass-normalized stiffness-like
coefficients of the second and third floors. The magnitude and location of the detected changes closely agree with the
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Fig. 7. Comparison of probability density functions of identified mass-normalized stiffness-like and mass-normalized damping-like coefficients. The solid

lines correspond to the pdf of the coefficients in the baseline condition. The dot-dashed and dashed lines show the coefficients’ pdf obtained in state#6

and state#7, respectively. (a) Normalized stiffness-like coefficients ð ~a ðiÞ10Þ and (b) Normalized damping-like coefficients ð ~a ðiÞ01Þ.
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actual stiffness modifications introduced in system. Also note that no false-positives in the aðiÞ10 coefficients were observed
for these scenarios. In contrast, the mass-normalized damping-like coefficients did not provide any useful information
about the condition of the structural system.

The results of this experimental study showed that the proposed detection approach for chain-like systems was able, in
a rigorous statistical framework and despite the inherent randomness in the dominant restoring force coefficients, to
confidently detect the presence of structural changes, accurately locate the structural section where the change occurred
(i.e., first-floor, second-floor or third-floor), and provide an accurate estimate of the actual level of ‘‘change’’. It is important
to point out that, for the established decision rule jDm=srjZ2:0, the minimum detectable (relative) change (MDC) in the
identified restoring force coefficients that can be reliably detected is given by MDC ¼ 2:0dr , where dr indicates the
coefficient of variation of the coefficients from the reference condition. For the mass-normalized stiffness-like terms aðiÞ10,
the corresponding minimum detectable changes were 8%, 9% and 7% for the first, second and third floor, respectively. Since
the magnitude of the structural changes was estimated quite accurately, it can be assumed that, relative structural changes
in the floor stiffness and mass of the LANL test-bed structure below an approximate 9% could not be reliable detected by
this proposed SHM methodology.
3.5. Global modal analysis

A full-order finite element model of the test structure, as well as the results from the experimental modal identification
using the ERA algorithm [40] were employed to validate the effectiveness of proposed change detection approach based on
the chain system identification methodology. The identification of the mass-normalized stiffnesses from the experimental
modal parameters (i.e., eigenvalues and mode shapes) was carried out through the least-squares solution of the associated
eigenvalue problem [41]. Similar to the chain-like system identification, the variations in the mass-normalized stiffnesses
can be caused by either changes in the mass or the stiffness of the structure. Therefore, a mass estimation would be
necessary in order to differentiate the type of structural change. Tables 4 and 5 summarize the relative changes ðDm=mrÞ

and signal-to-noise ratios ðDm=srÞ of the mass-normalized stiffnesses ki estimated from the analytical model (FEM),
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Fig. 8. Comparison of probability density functions of identified mass-normalized stiffness-like and mass-normalized damping-like coefficients. The solid

lines correspond to the pdf of the coefficients in the baseline condition. The dot-dashed and dashed lines show the coefficients’ pdf obtained in state#8

and state#9, respectively. (a) Normalized stiffness-like coefficients ð ~a ðiÞ10Þ and (b) Normalized damping-like coefficients ð ~a ðiÞ01Þ.

Table 3

Summary of relative mean change ðDm=mrÞ and signal-to-noise ratio ðDm=srÞ in the identified restoring force coefficients for the LANL test-bed structure.

State 1st floor 2nd floor 3rd floor

að1Þ10 ¼ k1 að1Þ01 ¼ c1 að2Þ10 ¼ k2 að2Þ01 ¼ c2 að3Þ10 ¼ k3 að3Þ01 ¼ c3

Dm=mr Dm=sr Dm=mr Dm=sr Dm=mr Dm=sr Dm=mr Dm=sr Dm=mr Dm=sr Dm=mr Dm=sr

State#2 �0.012 �0.285 �0.019 �0.027 0.005 0.100 �0.393 �0.320 �0.001 �0.023 0.036 0.034

State#3 �0.181 �4.480 �0.152 �0.213 �0.009 �0.179 0.094 0.076 �0.005 �0.130 0.259 0.245

State#4 �0.226 �5.579 �0.394 �0.549 �0.034 �0.695 0.389 0.317 �0.017 �0.491 0.074 0.070

State#5 �0.425 �10.506 �0.815 �1.138 �0.033 �0.678 0.118 0.096 �0.028 �0.796 �0.346 �0.328

State#6 �0.010 �0.235 0.027 0.038 �0.243 �5.019 �0.040 �0.033 �0.018 �0.523 �0.001 �0.001

State#7 0.009 0.229 �0.046 �0.064 �0.437 �9.019 �0.067 �0.055 �0.024 �0.689 0.039 0.037

State#8 0.014 0.352 �0.281 �0.393 0.049 1.002 �0.449 �0.365 �0.217 �6.257 �0.421 �0.398

State#9 0.025 0.629 �0.175 �0.244 0.015 0.312 �0.468 �0.381 �0.441 �12.688 �0.401 �0.379

Boldfaced table entries correspond to the detected structural changes.
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experimental modal analysis (ERA), and the proposed algorithm (ChainID). Table entries in boldface correspond to actual
structural changes that were detected correctly while the underlined ones were false positives.

From simple inspection of the tabulated Dm=mr values (Table 4), it can be observed that both the ERA and ChainID
algorithms were capable of estimating, with very good level of accuracy, the magnitude of the different structural changes
to which the LANL test-bed system was subjected to. However, by comparing the Dm=sr indices in Table 5, the chain-like
system identification methodology is shown to have better detection robustness than the eigensystem realization
algorithm. No false-positive changes were detected by the approach proposed in this paper while the ERA had a
false-positive rate of 35.3% (6/17). Notice that this rate depends on the threshold for Dm=sr , and it clearly can be increased
or reduced by varying the levels of confidence. Keep in mind that the condition jDm=sr jZ2:0 was assumed in order to
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Table 4
Global system identification.

State Dm=mr

k1 k2 k3

FEM ERA ChainID FEM ERA ChainID FEM ERA ChainID

State#2 – �0:098 �0.012 – 0:029 0.005 – �0.005 �0.001

State#3 �0.160 �0.102 �0.181 – �0:110 �0.009 – 0:037 �0.005

State#4 �0.218 �0.196 �0.226 – �0.006 �0.034 – 0.003 �0.017

State#5 �0.437 �0.390 �0.425 – �0.026 �0.033 – 0.008 �0.028

State#6 – �0.009 �0.01 �0.218 �0.240 �0.243 – �0:036 �0.018

State#7 – �0.032 0.009 �0.437 �0.456 �0.437 – �0:059 �0.024

State#8 – �0.007 0.014 – �0.008 0.049 �0.218 �0.213 �0.217
State#9 – 0.001 0.025 – �0.021 0.015 �0.437 �0.425 �0.441

Comparison of Dm=mr in the identified mass-normalized stiffnesses for LANL test-bed structure. Boldfaced table entries correspond to the actual structural

changes and false positives, respectively.

Table 5
Global system identification.

State Dm=sr

k1 k2 k3

ERA ChainID ERA ChainID ERA ChainID

State#2 �3:260 �0.285 2:013 0.100 �0.496 �0.023

State#3 �3.388 �4.480 �7:610 �0.179 3:447 �0.130

State#4 �6.514 �5.579 �0.414 �0.695 0.293 �0.491

State#5 �12.968 �10.506 �1.815 �0.678 0.821 �0.796

State#6 �0.300 �0.235 �8.575 �5.019 �3:415 �0.523

State#7 �1.066 0.229 �17.029 �9.019 �5:542 �0.689

State#8 �0.236 0.352 �0.552 1.002 �9.807 �6.257
State#9 0.037 0.629 �1.480 0.312 �19.569 �12.688

Comparison of Dm=sr in the identified mass-normalized stiffnesses for LANL test-bed structure. Boldfaced and underlined table entries correspond to the

actual structural changes and false positives, respectively.

Table 6
Comparison of numerical and experimental modal parameters.

Mode f (Hz) z (%)

FEM ERA ChainID ERA ChainID

1 29.90 30.81 31.38 4.17 4.37

2 55.46 55.38 59.19 1.49 1.90

3 72.60 71.11 75.39 0.64 0.94
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detect structural changes beyond the 95% confidence intervals of the reference distributions. The minimum detectable
change ðMDC ¼ 2:0drÞ in the mass-normalized stiffnesses identified with ERA was found to be around 6%. However, because
of the high rate of false-positives obtained with ERA, it is not possible to assume that the estimated MDC would be a good
indication for the minimum structural change that can be detected by this approach.

Even though the use of modal properties to detect changes in the structure were out of the scope of this study, it was
interesting to check the consistency in the parameters obtained by a global identification techniques such as ERA, and the
presented methodology. The numerical and experimental frequencies, as well as the damping ratios, for the reference
condition are shown in Table 6. For all other scenarios, only the relative changes in natural frequencies were summarized
in Table 7. It can be seen that frequency changes, for some specific scenarios and modes, were better estimated by either
the ERA or the ChainID method, but generally speaking, both approaches exhibited similar performance. Furthermore,
these results show some of the limitations that modal-based detection techniques, especially those using natural
frequencies, can experience in detecting, locating and estimating the level of damage in real structures.
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Table 7
Relative changes in experimentally identified natural frequencies.

State Dm=mr

f1 f2 f3

FEM ERA ChainID FEM ERA ChainID FEM ERA ChainID

State#2 �0.036 �0.013 �0.000 �0.019 �0.021 �0.003 �0.005 �0.006 �0.007

State#3 �0.006 0.003 �0.027 �0.021 �0.016 �0.050 �0.031 �0.035 �0.026

State#4 �0.034 0.004 �0.043 �0.063 �0.063 �0.067 �0.023 �0.022 �0.039

State#5 �0.094 �0.021 �0.111 �0.133 �0.143 �0.156 �0.040 �0.041 �0.080

State#6 �0.065 �0.032 �0.079 0.001 0.006 �0.007 �0.052 �0.069 �0.061

State#7 �0.157 �0.081 �0.164 �0.013 0.014 �0.006 �0.108 �0.133 �0.102

State#8 �0.035 �0.021 �0.022 �0.062 �0.064 �0.059 �0.023 �0.022 �0.007

State#9 �0.095 �0.057 �0.094 �0.132 �0.135 �0.134 �0.039 �0.039 �0.027
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4. Summary and conclusions

An experimental study is performed to evaluate the effectiveness and reliability of a SHM methodology for uncertain
MDOF chain-like systems, built on a data-driven non-parametric identification technique. The relatively simple
computational procedures and the decomposition scheme makes this approach suitable for being adopted in small
wireless embedded sensor nodes. Even though this SHM approach can only be implemented for a specific type of
structures, the chain-like system topology encompasses many practical applications in the aerospace, civil and mechanical
engineering fields (e.g., tall buildings, transmission towers, offshore platforms, wind turbines and airplane wings).

The data-driven non-parametric identification approach, based on the Restoring Force Method, is used to develop a
reduced-order model-free representation for each of the interconnecting elements in the MDOF chain-like system, by
determining the dominant power-series coefficients (i.e., restoring force coefficients) that characterize the governing
dynamic features of the system. This makes the restoring force coefficients a suitable set of parameters for change
detection applications. Experimental data (only the acceleration time-histories) from a test-bed structure, that has been
tested at the Los Alamos National Laboratory (LANL), were used to illustrate the implementation of this approach.

The experimental results clearly demonstrate the effectiveness and robustness of the proposed SHM scheme and the
chain-like system identification method to confidently detect and locate structural changes in the system despite the
modeling, measurement and data processing uncertainties. Moreover, it is shown that the dominant restoring force
coefficients, which proved to be reliable change-sensitive features, can be used in a rigorous statistical framework not only
for detecting and assessing the magnitude of the changes, and quantifying the detection uncertainty, but also for
estimating the level of minimum detectable changes in the restoring force coefficients that can be reliably identified by this
proposed SHM methodology.

A full-order finite element model of the test structure, as well as the results from the experimental modal identification
using the ERA algorithm were employed to validate the results obtained by the proposed identification approach. Although
both experimental algorithms were capable of estimating, with very good level of accuracy, the magnitude of the actual
structural changes, the chain-like system identification methodology clearly showed that it is more reliable and has better
detection rate than the ERA method.

It is important to note that, the methodology presented in this study was demonstrated by detecting changes in the mass
and stiffness of a small-scale structure tested in a well-controlled laboratory setting and as such, the influence of nonlinearities
and the effect of operational and environmental conditions were not incorporated into this study. Furthermore, the actual
physical changes made in the structure were quite severe and not representative of realistic scenarios likely to be encountered
in practical field implementations. None the less, as long as the effects of operational and environmental conditions, and
underlying damage mechanisms in a target structure are reflected in the monitored structural dynamic response, then the
method under discussion may provide a useful tool to accurately detect, locate (within each ‘‘decomposed’’ structural region),
and quantify the level of damage as reflected in the identified restoring force surface.
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